Vulnerable wetland ecosystem seeks sustainable relationship with plantation forestry

(Or...)

Hydro-ecological modelling of a perched wetland system in search of a sustainable forest planting fraction.

David Deane¹, Pragya Pradhan Shrestha¹, James Hall², Paul Magarey¹, Graham Green¹, Ceridwen Synnot²,

¹. South Australian Department for Water
². South Australian Department for Environment and Natural Resources
Today covering the following:

• Introduce Fleurieu Peninsula wetlands
• Define the problem and questions
• Modelling approach
• Findings
Fleurieu swamps and wetlands

• Major ecological assets - critical remnant habitat:
 30% of 742 plant species of conservation significance
 Fleurieu Peninsula Swamp is an EPBC Listed TEC

• Three functional categories based on hydrogeology:
 Perched (local scale processes ~75% of all)
 Fractured rock (intermediate scale processes)
 Permian Sands (regional scale processes)
Hydro - ecological character

• Intact swamps typically present a structural mosaic with 3 vegetation strata

• Seasonal hydrology – winter spring dominated rainfall and streamflow

• Perched swamps feature only very shallow, seasonal inundation
Perched Fleurieu wetland
a priori conceptual model

Clay (weathered basement)

Fractured rock aquifer (fresh basement)
Questions

• How sensitive are perched wetlands to afforestation?

• How would ecological expression change with increasing planting fraction?

• Are major shifts in character predictable?

• Are state water allocation policies around the mark to protect perched systems?
Study approach

• Three small (~100 ha) low order perched wetland catchments under different landuse:
 pine forest; pasture; and native woodland

• Install hydrometric network at each (RF, SW, GW) plus vegetation and soil survey

• Built models of runoff response and predictive vegetation models
Modelling approach

• Construct rainfall runoff model, calibrating each land cover to observed data

• Incorporate a residual wetland storage (analogous to a farm dam)

• Lumped model, semi-distributed to create hypothetical catchment/wetland system

• Model wetland dynamics as a piecewise linear function of storage – based on two layer soil profile
Rainfall – runoff model construction

- Plantation fraction
- Pasture fraction
- Buffer (pasture)
- Wetland storage
- Catchment runoff
- Hydrological statistics

Transform to a depth to water using piecewise linear function

PFG probabilities

Post processing

Model node

Model output

Model domain
Modelling – vegetation

• Model wetland vegetation community at plant functional group level (Casanova and Brock 2000)

• Categorise species based on water availability preference

• Logistic regression used to match PFG probability to a given phreatic surface duration from observed data

• Probabilities or each PFG used as an objective community state variable for each water regime
Plant functional groups

Increasing depth ➔

Increasing duration ➔

Tdamp ➔ Tdry

Se ➔ Sk

Aftl ➔ Afrp, Afrf, Sr

Afte ➔ Aftw
Scenarios – based on state policy

• Varied planting fraction of pine
 12%, 30%, 50% 70% 100% of catchment, remainder pasture

• Varied buffer widths:
 10, 20, 50, 100 metres width (0.2 – 2.5 x wetland area)
Analysis

• Statistical summaries of runoff response and phreatic surface dynamics

• Estimates of plant functional group (PFG) probabilities of presence

• Community analysis of the resulting (arcsine transformed) PFG probabilities
Results - reviewed conceptual model

• Original model more or less supported

• Hydrology strongly influenced by the texture contrast soils

 1). Interstitial seepage through surface loams over the control layer

 2). Via preferential flow through cracks and macropores in sub-soils
Revised conceptual model
Results – catchment yield

- Most statistical measures exhibit inverse linear relationship with planting fraction

![Data Chart] (180, 160, 12, 10, Pasture, 12% pine, 30% pine, 50% pine, 70% pine, 100% pine, Native woodland)
Results – catchment yield continued

• Linear response often observed in forest vs grassland runoff comparative studies

• Reduction low compared with published values: (13mm/10% forest; lit: ~15 – >40 mm/10%)

• Absence of a clear threshold response raises the question of what is a sustainable yield reduction?

• What about wetland storage impacts?
Results – phreatic surface dynamics

![Graph showing the relationship between forest planting fraction and depth to water. The graph indicates a negative linear trend.]
Results – phreatic surface dynamics

Mean depth to water for month (m)

Month

Pasture
20B30
20B12
20B100
Native
Results – phreatic surface dynamics (continued)

• As with runoff, changes in wetland storage were inverse linear to planting fraction

• Again the question arises of ‘how much is too much’?

• What about buffers?
Results – Buffers

• Tended to have limited value for low planting fractions

• For fully planted catchments, major affects on catchment yield and wetland storage

• Runoff and phreatic surface durations were increased, with effects on PFG communities
For 100% forest 0 to 100 metre buffer:

- Median annual runoff + ~50%
- Mean depth to water + 0.1m

For 30% forest 20 to 100 metre buffer:

- Median annual runoff + ~5%
- Mean depth to water + 0.01m
Results – predicted vegetation communities

• All PFG models were monotonically increasing functions of duration

• Differences between planting fractions, but not for buffers (except 100% planted)

• Major split between pasture \geq 30% and 100% forest (Tdry – terrestrial plants)

• Minor split between intermediate plantings and low plantings (\leq30%; Afrp, SE)
Plant functional group ‘communities’

Partially cleared scenarios

Fully forested scenarios

Height

pasture 20B12 20B30 20B50 20B70 0B100 20B100 Native 50B100 100B100
Answers to questions posed

How sensitive are perched wetlands to afforestation?

- Below 30% planting, reasonably robust with some caveats
 - Functional groups contain variability – some risk
 - Minimise shared boundary to avoid local effects
Answers to questions posed

How would ecological expression change with increasing planting fraction?

- Low suitability for high water requirement functional groups

 Afrp (and SE) high risk at > 30% planting fraction

 At 30% high water requirement *species* may be at risk

 12% planting fraction unlikely to make a detectable difference

- Increments in planting fraction would express as shifts in relative abundance of PFG
Answers to questions posed

Are shifts in ecological character predictable?

• Some thresholds suggested but generality of the findings need caution

• Terrestrial species likely able to colonise wetland at 100% planting – manage with buffers
Answers to questions posed

Are state policies adequate to protect perched systems?

- Probably - 30% planting fraction seems OK, and a 20m buffer appears adequate – local effects need further investigation

- Results are not guaranteed to be applicable where catchment:wetland ratios differ
Conclusions

• Forest and perched wetlands can coexist sustainably

• Probability of changes to vegetation community increase with planting fractions greater than ~ 12%

• A 30% planting with buffer unlikely to change ecological character, but some cautions

• Plant functional group modelling provides a clearer picture of a suitable development threshold